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This paper describes a numerical and theoretical study of the transient natural convection 
heating of a two-dimensional rectangular enclosure filled with fluid. The heating is applied 
suddenly along one of the side walls, while the remaining three walls are maintained 
insulated. It is shown that the process has two distinct phases, an early period dominated 
by conduction and a late period dominated by convection. The scaling laws for the heat 
transfer rate and the effectiveness (energy storage fraction) are determined based on scale 
analysis. These theoretical results are confirmed by numerical experiments conducted in 
the domain Ra = lo”1 p, Pr =7, A = 1, where Ra is the Rayleigh number based on height 
and initial temperature difference, Pr is the Prandtl number, and A is the height/length 
ratio of the enclosure. Correlations for heat transfer rate and effectiveness are constructed 
by comparing the theoretical scaling laws with the numerical results. 

Keywords: transient natural convection; numerical experiments; scale analysis 

Introduction 

Despite the deluge of publications on natural convection heat 
transfer of the past decade, the literature shows that there have 
been relatively few studies of the fundamentals of transient 
natural convection in enclosures. This state of affairs seems 
surprising if we consider the fact that most of the confined flows 
driven by buoyancy in architectural, environmental, and solar 
energy engineering applications are timedependent. One 
possible explanation for the almost exclusive coverage of 
steady-state natural convection in enclosures is that the steady 
state is simpler, easier, and safer as a research topic than its 
transient counterpart. The latter turns out to be one of the more 
controversial topics in natural convection today.ip6 

In the present study we document the most basic features of 
the phenomenon of transient natural convection in an enclosure 
by focusing on what is perhaps the simplest configuration in 
which the phenomenon can be studied. This configuration is 
the two-dimensional rectangular enclosure shown in Figure 1, 
in which one side wall is suddenly heated to the new temperature 
I’,, while the remaining three walls are perfectly insulated. In 
the initial state the fluid that fills the enclosure is motionless 
and isothermal at temperature Tr. The study is a combination of 
numerical experiments and scale analysis whose chief engineer- 
ing objective is to produce scaling-correct correlations for the 
evolution of the heat transfer rate and bulk temperature of the 
enclosed fluid. 

Among the few studies that have addressed the general topic, 
a prominent position is occupied by Patterson and Imberger’s 
paper.’ They treat a configuration related to that of Figure 1, 
in which the right wall is cooled suddenly at the same time as 
the left wall is heated. Several of Patterson and Imberger’s 
scaling results apply to the present problem as well; therefore, 
they are identified and adopted at various stages in the 
presentation that follows. The controversy that accompanies 
the topic of transient natural convection in enclosures is 

illustrated by the more recent experimental studies’-’ and by 
Patterson’s6 refinement of the original scaling theory.’ One 
purely numerical study that addressed the same configuration 
as the one shown in Figure 1 was published recently by Nicolette 
et al.’ The theoretical component (scale analysis) of the present 
paper is offered therefore as an explanation for Nicolette et d’s 
observations as well as for our own numerical experiments. 

Mathematical formulation 

The fluid that fills the two-dimensional cavity of Figure 1 was 
modeled as Newtonian, Boussinesq-incompressible, and with 
constant thermophysical properties. The Boussinesq-incom- 
pressible assumption means that the density is regarded as a 
constant in the course of writing the governing equations, the 
only exception to this rule being the buoyancy term of the 
momentum equation, in which the density is assumed to 
decrease linearly as the temperature increases. 

The vorticity-stream function formulation of the diiension- 

Figure 1 Two-dimensional enclosure heated along the left wall 
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less momentum and energy equations is 

~X 0fl 2 Ra 00 
P r ' t  0fl+u0z +V~-~fV ('1-4 Pr OX (1) 

f~ = - V 2 ~  (2) 

P r - '  aO+ U 0 0 +  V 00 = Pr-  'V20 (3) 
0~ OX OY 

where V 2 =02/0X2 +02lay 2. The dimensionless variables that 
appear in these equations are defined by the relations 

X x y = y  (4) = ~ '  /_/ 

ti I) 
u = - -  v -  (5) 

v/H' v/H 

t T - T  i 
= H21ty , 0 = Th ------~i (6) 

V = - -  [~  = - -  (7) 
v/H 2' v 

in which the dimensionless variables and thermophysical 
properties are defined in the Notation. The physical stream 
function and vorticity are defined in the usual manner by writing 
u = Od//Oy, v = - Oq//Ox, and ~o = Ov/Ox- Ou/Oy. 

In the numerical experiments that are described next, 
Equations 1-3 are solved subject to the initial conditions 

~P=0 and 0=0 at~=O (8) 

and the four boundary conditions that are maintained for times 
~>0: 

• =0~---~=0 and 
OX 

• =OW---~-=O and 
OX 

0=1  at X =O (9) 

0 0 = 0  a t X = A  - ' -L--  (10) 
~X H 
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Wf~W=O and ~ 0 = 0  at Y- -OandY=l  (11) 
OY OY 

~The governing equations and boundary conditions listed above 
involve three d i m e n s i o n l e s s  groups, namely, the geometric 
aspect ratio A =H/L, the Prandtl number Prfv/=, and the 
Rayleigh number based on cavity height, 

oflH3AT 
Ra = - -  (12) 

0~V 

in which AT= Th-- T~. 

N u m e r i c a l  p r o c e d u r e  

The alternating direction implicit (ADI) method of Peaceman 
and Rachford s was used in order to solve the vorticity and 
energy equations, Equations 1 and 3. The ADI formulation of 
these equations is a tridiagonal matrix that can be solved readily 
using a special adaptation of Gaussian elimination,~namely, the 
Thomas algorithm. ADI was preferred over other methods, 
because it allows relatively larger time steps. Furthermore, it 
has second-order accuracy and its weak stability conditions are 
easier to satisfy. The instabilities are caused by the nonlinear 
inertia and convection terms of Equations 1 and 3. ! n qrder to 
improve the stability, the nonlinear terms were evaluated usiag 
the second upwind differencing method. The stream-function 
equation 2 was solved by using .the successive overrelaxafion 
(SOR) iterative method. 

The numerical procedure for any given time step. started with 
determining the temperature field 0 by solving Equation 3. The 
velocity values calculated at the previous time step were ,used 
in this phase in order to improve the stability. The ~ x t  phase 
involved the use of Equation 1 in order to ¢[e~'rmine the 
vorticity field fl and, finally, the SOR solution to Equation 2 
for the stream-function field W. The velocity components at 
every grid point were then evaluated by invoking the definitions 
U = 0W/0 Y and V= -~vJ/OX. Next, the fields for 0, t'l, and 
were calculated sequentially one more time, using now the 

N o t a t i o n  

A 
C 

e l ,  C2 
O 
H 
k 
L 
Nu 
Pr 
Q 
Ra 
Ra, 
t 
tf 

t~o 

T 

T~ 
AT 

Geometric aspect ratio, H/L 
Specific heat 
Empirical constants of order 1 
Gravitational acceleration 
Height 
Thermal conductivity 
Length (horizontal dimension) 
Nnsselt number, Equations 18 and 19 
Prandtl number 
Instantaneous overall heat transfer rate, W/m 
Rayleigh number based on AT 
Rayleigh number based on AT' 
time 
Time scale when the vertical boundary layer 
becomes convective, Equation 22 
Time scale when the cavity has absorbed practically 
all the energy that it can absorb, Equation 34 
Temperature 
Heated wall temperature, Figure 1 
Initial temperature 
Initial temperature difference, Th--T~ 

AT' 

14, V 

U, V 

x, y 
X , Y  

Instantaneous heated wall-bulk fluid temperature 
difference 
Horizontal and vertical components 
Dimensionless horizontal and vertical velocity 
components 
Cartesian coordinates, Figure 1 
Dimensionless Cartesian coordinates 

Greek Symbols 
0¢ 

0 
17 

p 

TE 
"fL 

0 , f  

11 

Thermal diffusivity 
Coefficient of volumetric thermal expansion 
Effectiveness, Equation 21 
Dimensionless temperature 
Kinematic viscosity 
Density 
Dimensionless time, Equation 6 
Early-period dimensionless time, Equation 26 
Late-period dimensionless time, Equation 35 
Stream function 
Dimensionless stream function 
Vorticity function 
Dimensionless vorticity function 
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Figure 2 The effect of grid fineness on the heat transfer rate history 
IRa = (1.4)10 =, Pr=7, A = I ]  

updated velocity values. ~ i s  iterative procedure was continued 
until the 0, f~, and ~F values at each grid point converged on 
what became the "solution" for the given time step. The entire 
procedure was then repeated for each of the time steps that, 
taken together, represent the history of the natural convection 
phenomenon. 

The numerical solutions included in this paper correspond 
to a "high Pr" fluid (water, Pr--7), as demanded by the 
theoretical part of the study. In all the computational runs the 
cavity geometry was square (A -- 1), while the Rayleigh number 
varied in the range 10a-10 e. 

All calculations were made using a uniform grid (equidistant 
mesh) whose fineness was tested carefully for stability and 
accuracy before final adoption. For example, the cell Reynolds 
number criterion for stability requires 9 

rAY<2 (13) 
V 

in which v is the largest velocity scale in a grid cell of size Ax 
by Ayl Taking as representative v scale the vertical velocity in 
the left-side boundary layer 1 (see also Bejan, 1° p. 120, the case 
"Pr > 1"), we have 

v ~ ~  Ra ½ (14) 
H 

The maximum grid size allowed by this criterion is 

AY<2PrRa-½ (15) 
H 

The chosen grid spacing was even smaller, this in order to place 
at least four grid points inside the thinnest boundary layer 
region (the left-side thermal boundary layer). 

The time step from one converged solution to the next, Az, 
had to satisfy the corresponding stability criterion 

At < (Ay)2 (16) 
2v 

which translates into 

P r  
Az<2 - -  (17) 

Ra 

For example, in the solution obtained for Ra=(1.4)I0* and 
Pr=7  the time step A~ was set equal to (3.02)10 -4. 

The effect of grid fineness on the accuracy of the reported 
numerical solutions is illustrated in Figure 2, which shows how 
the overall Nusselt number calculated over the heated wall 
decreases as the time increases. The overall Nusselt number is 
defined as 

Q 
N u - - -  (18) 

kH A T/L 

where Q is the total instantaneous heat transfer rate from the 
heated wall per unit length normal to the plane of Figure 1. In the 
dimensionless notation employed in the numerical formulation 
of the problem, Equation 18 becomes 

Nu=  1 f l - - ( 0 0 ' )  dY (19) 
A Jo \OX/x=o 

The grid size effect on Nu is shown by the detailed drawing 
corresponding to TL=0.04, where eL is a dimensionless time 
whose definition is recommended by the time scale of late stages 
of the transient phenomenon (see Equation 35). The late- 
transient dimensionless time TL is proportional to the .time 
defined in Equation 6, 

A 
"C L = "[" - -  Ra (20) 

4 

There are two converging curves shown in the detail added to 
Figure 2. The lower curve is based on Equation 19, that is, by 
integrating the heat flux over the left wall. The upper curve 
represents the rate of increase of the bulk temperature of the 
enclosed fluid, as calculated at the preceding time step. This 
construction is based on invoking the first-law argument that 
the instantaneous heat transfer rate into the box is equal to the 
rate of internal energy accumulation inside the box. (The same 
argument serves as basis for the concept of "effectiveness" 
defined in the next section.) The discrepancy between the two 
estimates decreases gradually as the grid becomes finer. In the 
case of the 41 x 41 grid that was used for generating the solutions 
shown in Figures 3-6, the difference between the two Nu 
estimates is approximately 2%. 

N u m e r i c a l  r e s u l t s  

Figures 3 and 4 illustrate the main features o f  the transient 
heating by natural convection of the cavity fluid:The numbers 
listed on the streamlines and the isotherms indicate the values 
of the computed ~P and 0 values. 

At relatively low Rayleigh numbers, Figure 3, the circulation 
consists of a single roll whose center is located near the 
geometric center of the cavity. This flow pattern persists 
throughout the *L interval spanned by the life oftbe phenomenon. 
The isotherm patterns show that in the beginningthe temperature 
field develops in a manner similar to the pure conduction 
problem triggered by a step change in the surface temperature 
of a semi-infinite solid. The isotherms gradually acquire a flit, 
because of the clockwise circulation. Finally, at *L values of 
order 1 the bulk temperature of the cavity fluid approaches the 
temperature imposed along the heated wall. The natural 
circulation dies down on account of the vanishing wall-fluid 
temperature difference, and, because of this, the heat transfer 
process favors again the conduction-dominated mode (note the 
return to nearly vertical isotherms in the last ¢L frame of Figure 
3). 

At higher Rayleigh numbers, Figure 4, the flow and temper- 
ature fields become considerably more interesting. The formation 
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Figure 3 The evolution of the streamline and isotherm patterns when Ra=(1.4)I0 =, Pr=7, and A = I  

and persistence of a distinct vertical boundary layer along the 
heated wall is evident. The discharge from this vertical jet forms 
initially a horizontal intrusion layer that proceeds along the 
top of the enclosure. This stage is shown clearly by the isotherms 
of the XL=0.03 frame, which, incidentally, look very similar to 
the motion-picture interferograms reported by Lee and Kauh.* 
As pointed out recently by Otis, s the heating of the "core" of 
the cavity is affected by the horizontal flow (detrainment, or 
negative entrainment) out of the vertical jet that is heated by 
the left wall. The result of this detrainment is the formation 
of a thermally stratified core whose temperature increases 
monotonically at all altitudes, even though the stratification 
persists. The "eye" of the circulation is noticeably closer to the 
heated wall throughout the ~L interval documented in Figure 4. 
Once again, a ~L value of order 1 marks the end of the 
transient natural convection phenomenon. 

The history of the overall heat transfer rate through the left 
wall is summarized as Nu versus ~c in Figure 5. Each curve is 
bordered at ~L •0 by the pure conduction asymptote Nu--, oo 
and at zL >> 1 by the isothermal steady-state asymptote Nu--, 0. 

Desite the existence of these common asymptotes, it appears 
that the Nu (:L) curves do not have the same shape in the time 
interval 0 < z L < 1. Indeed, the scale analysis ofthe next section 
shows that the scaling law (i.e., the "shape") of the Nu curve 
changes as the time increases and as more of the cavity flaid 
feels the heating supphed through the left wall. 

The extent to which the cavity fluid has absorbed (stored) 
the energy of which it is capable is documented in Figure 6 by 
plotting against zc the internal energy change fraction, called 
"effectiveness" for short, 

1 
f' Q dt (21) 

8 = p c H L  A T  .I o 

The effectiveness 8 increases from e = 0 (at :i. = 0) to 8 = 1 when 
~L is sufi~iently greater than 1. Figure 6 suggests that the use 
of ~L on the abscissa is an el~'tive means of correlating the 
effectiveness history information. We learn next that this 
correlation method breaks down in the early stages of the 
phenomenon. 
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S c a l e  a n a l y s i s , o f  t h e  e a r l y  period 

Immediately after t :  0 the heated wall develops a thermal 
boundary layer whose thickness grows by pure conduction (that 
thickness is (,,t)*). It has been shown by Patterson and 
Imberger ~ that if Pr> 1 this initial conduction layer becomes 
a convection boundary layer at a time of order 

H 2 
If ~ - -  Ra -~ (22) 

The Pr> 1 assumption means that in the thermal boundary 
layer the momentum balance is between buoyancy and friction 
(see also Ref. 10, p. 163). 

We focus first on the early part of the transient, 0 < t < tf, 
when the heat transfer through the left wall is dominated by 
conduction. In this regime the instantaneous overall heat 
transfer rateis of order 

AT' 
Q. . . kH  - -  (23) 

(=t)~ 

where AT' is the temperature difference between the wall and 
the instantaneous bulk temperature of the cavity fluid. This 
temperature difference decreases in time and (it can he shown 
quite easily) the decrease is directly related to the increase in 
effectiveness, 

AT' = I - - -  (24) 
AT 

Eliminating AT' between Equations 23-24, and then integrating 
21 in which e=0 at t=O, we obtain a relation of the form 

,=' (25) 

In keeping with the rules of scale analysis we write cl in place 
of the unknown coefficient, which by definition is a numerical 
factor of order 1. 

It is helpful to define at this point a new dimensionless time 
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Figure 4 The evolut ion of the streamline and isotherm patterns when Ra = (1.4)10 e, Pr=7,  and A = 1 

TE for the "early" period, 

t ½ 
~E = -  = zRa (26) 

t f  

which (the scaling theory says) should be of order 1 when the 
heat transfer mechanism is no longer dominated by conduction. 
Combining this with Equation 25 and rearranging yields 

1 
- - -  Ra* In(1 - ~ ) = ~  (27) 

2clA 
This result suggests that the early effectiveness values calculated 
numerically must fall on a single curve when plotted as 
Ra t In(1 - ~ )  versus zE, and that on a log-log plot the slope of 
this single curve (a line, actually) should be 1/2. Indeed, Figure 7 
shows that a relation of type (27) correlates successfully all 
the ~ data in the time domin ~ < O ( 1 )  and the Ra domain 
103-106. There is a "knee" in this curve, beyond which the 
slope increases above 1/2. In accordance with the time criterion 
(22), this knee is located at T~~O(1). 

Starting with Equation 23, the scale of the instantaneous 

overall Nusselt number for the early period can be deduced 
and expressed as 

Nu ~ A - 1Ra÷~ ~ (28) 

This means that the Nu data should fall on a single line of 
slope - 1 / 2  when plotted as log(NnARa -÷) versus log(re). 
Figure 8 shows that this is indeed the case and that the 
correlation breaks down at times greater than te ~ O(1). 

Scale analysis of the late period 

In this section we consider the times greater than the tr scale 
(22), when the thermal boundary layer that covers the left wall 
is ruled by an energy balance between horizontal conduction 
and vertical convectionY It is known that the thermal boundary 
layer thickness in this regime scales as H times the "Rayleigh 
number" raised to the power - 1/4. The distinguishing feature 
of the present problem, however, is that the temperature 
difference (AT') on which this Rayleigh number would be based 
is time-dependent. In other words, the leR-wall thermal boundary 
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layer thickness is of order HRa,  ÷, where Ra. is an 
"instantaneous" Rayleigh number whose relationship with Ra 
is 

Ra.=AT T Ra (29) 

The analysis is essentially the same as in the preceding section, 
except that in place of Equation 23 for the instantaneod~ioverall 
heat transfer rate we write 

AT' 
Q" kH HR---~a ~ (30) 

Equation 24 continues to hold. By eliminating AT' between 
Equations 30 and 24, we can recast the efficiency definition (21) 
into the form 

~ e 0 ~ t r ( l - e )  -s/4 d e ~ - -  Ra t _ dt (31) 
HL Jo 

It is being assumed that the regime (late period) under consider- 
ation begins at t g 0  (when egO), i,e., that the early period of  
the preceding section is much shorter than the late period. The 
validity of this assumption is verified at the end of this section. 

Integrating both sides of Equation 31, we learn that in the 

Transient natural convection in a rectangular enclosure: J. D. Hell et ~.  

late period the effectiveness should increase as 

[ ]" = t  Ra t (32) e ~ l - -  I + 4 H  L 

or ,  m o r e  precisely, as 

s= 1-[1'+c2 4~L Rat] -" (33, 
where c2 is another numerical coefficient of order 1. The first 
implication of this result is that the transient heating process 
is practicaly over (8~ 1) when the second term in brackets 
begins to dominate, that is, when t>too, where 

too ~4  --HL Ra_ ÷ (34) 
= 

In terms of the late-period dimensionless time rL, 

=t ~ A ., 
ZL= Ra = - -  Ra÷z (35) 

4HL 4 

the effectiveness relation (33) reads 

(1 - s )  - t -  1 = c2 '~  L (36) 

suggesting that the numerical e data might be correlated as a 
straight line of slope 1 in the plane formed by log[(1 - e )  - ÷ -  1] 
versus log eL- Figure 9 confirms this idea very well, showing 
further that this correlation method breaks down at time ZC less 
than O(1). 

The Nu scale in the late period follows in a few steps from 
Equations 30, 24, and 36: 

Nu ~ A - ÷Rat(1 + C2ZL)- S (37) 

The correctness of this scaling law is tested in Figure 10, the 
construction of which proceeded from reading Equation 37 as 

(NuARa-÷)- 1/5 _ 1 -- cuz L (38) 

The figure shows clearly that the left-hand side of Equation 38 
becomes proportional to ZL at times of order ZL~O(1) and 
greater. The value of the proportionality constant c2 in this 
range is approximately 0.832. 

It remains to verify that what we called "late period" lasts 
much longer than the early period, which was treated fLrSt. This 
assertion is correct if, in an order of magnitude sense, 

too > tf (39) 

Recognizing Equations 22 and 34, we see that the above 
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criterion translates into 

4Ra t > A (40) 

which is certainly confirmed by the (Ra, A) domain covered by 
the numerical experiments described in the first part of the 
paper (Figures 3-6). 

C o n c l u s i o n s  

The transient natural convection heating of an enclosed fluid 
was analyzed by recognizing the two heat transfer mechanisms 
that compete during the process. In the "early" period, which 
is represented by the time criterion t<t f ,  the heat transfer 
through the side wall is dominated by conduction. During the 
"late" period (t > tr) the heating from the side is predominantly 
convective. The instantaneous Rayleigh number Ra,  (based on 
AT') decreases steadily as t increases. Consequently, the fluid 
approaches a uniform temperature, and the process is again 
dominated by conduction. This particular time scale is associated 
with the time when the side-wall thermal boundary layer 
thickness H R a ,  ÷ has grown to be comparable with H, i.e., when 

Ra, ,,~ O(1) (41) 

or, via Equation 29, 

AT' 
,,, Ra-  1 (42) 

AT 

Substituting into this condition Equations 24 and 33 leads 
finally to 

4 
~ -  (43) 

A 

This time scale can be compared with the time when the cavity 
stores practically all the energy of which it is capable (e ~ 1). 
Then, by setting ~L ~ 1 in Equation 35, t,,,(4/A)Ra -~. Since 
Ra>> 1, we conclude that the time scale given by Equation 43 
is longer than the time when ~ ~ 1. The time scale that separates 
the early period (fifth section in this paper) from the convective 
period (sixth section) is t ~ tf, which corresponds to z ~ Ra-~r. 

As an engineering summary to this study, the scaling-correct 
correlations for e and Nu are 

91 - exp( -  1.144Az~), z < Ra -~ 
~ =,[  1 _ (1 + 0.208Ra~A~)_ 4, z > R a  -~ (44) 

Nu - ~ 0"591A- z~-½' T<Ra-½ (45) 
= (0.847A- z Rat(1 + 0.208RatA~)- 5, ~ > Ra-  ½ 

These expressions contain the numerical coefficients of order 1 
mentioned during the scale analysis, which have been determined 
empirically based on the numerical results described in the third 
and fourth sections. One noteworthy feature of these correlations 
is that they do not contain Pr as an independent parameter. 
This feature is a reflection of the "Pr > 1" assumption made 
early on in the scale analysis of the convection-dominated 
period. The chief contribution of the scale analysis of boundary 
layer natural convection in Pr > 1 fluids is the conclusion that 
the relevant dimensionless group is the Rayleigh number, i.e., 
that the Prandtl number and the Grashof number always 
participate as a product (Ref. 10, pp. 116-118). 

In using the correlations (44, 45), one should keep in mind 
that they are based on the assumption of constant properties. 
In reality, the group [3/gv for water increases by roughly 25% 
as the temperature changes from 25 to 30°C (Ref. 10, p. 463). 
Under the same conditions, the group [3/=v for dry air decreases 
by approximately 8% (Ref. 10, p. 465). Therefore, the con- 
clusions of this study can be regarded as only approximate in 
applications in which the initial temperature difference between 
wall and fluid is greater than 5°C. 
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